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Time scales in rotating unstable Langevin-type dynamics
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~Received 30 July 2001; published 30 October 2001!

In this Rapid Communication we propose a different and general characterization of rotating, unstable
Langevin-type dynamics in the presence of an external force in the context of two dynamical representations
x andy, using the passage time distribution. Herey is the transformed space of coordinates obtained by means
of a time-dependent rotation matrix. The Langevin dynamics in the newy space defines an interesting concept
of external force and internal noise due to rotation. The theory is applied to the characterization of rotational
unstable systems of two~such as the laser system! and three variables, and stimulates its application in other
fields, for instance, in plasma physics.
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Stochastic differential equations have become a us
tool in the description of a great variety of physical syste
in which the presence of fluctuations plays a fundame
role. During the seventies and eighties the study of trans
relaxation of unstable states~or in general, of any initial
condition far from the steady state! was proposed as an in
teresting topic in the study of nonequilibrium phenome
@1#. The decay of unstable steady states has been studi
various specific contexts such as dynamics of phase tra
tions @2,3#, hydrodynamical instabilities @4#, spinodal
descomposition@5#, the switch on of lasers@6#, relaxation of
chemical instabilities@7#, and dynamics of liquid crystals@8#.
Among the various methods proposed to study the deca
unstable steady states, we find the method of time sc
called the passage time distribution~PTD! and nonlinear re-
laxation times~NLRT!; both theoretically developed in th
context of Langevin-type dynamics@9# or Fokker-Planck
equation@10#. In the early nineties it was proposed by V
mury and Roy@11# that very weak optical signals can b
detected via the transient dynamics of a laser using the l
as a superregenetive receiver. Immediately after the P
@12# and NLRT methods@13# were used to corroborate th
numerical@11# and experimental@14# results. Later Dellunde
et al. @15# proposed an alternative passage time method
detect efficiently large optical signals in a laser, showing
this case the oscillatory behavior of the system. In the
lowing year the detection of weak optical signals in the sa
laser system was studied by the same authors, taking
account the phase fluctuations of the injected signals@16#.
However, nothing about the oscillatory behavior of the s
tem was discussed, neither why the quasideterministic~QD!
approach works well in the time characterization of suc
system. Most of the works cited above rely upon a Langev
type equation, whose associated systematic force is der
from a potential, with the exception of those studied in Re
@15,16#. Inspired in these last works, a rotating Langev
type dynamics has recently been proposed in@17,18#, in
which that laser system is such a particular case. For rota
unstable systems we mean those which, once leaving
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initial unstable state, describe practically deterministic ro
tional trajectories to reach the steady state or some appr
mation of it. In Ref.@17# the ~QD! approach, valid in the
limit of long times, is used to study the characterization
those particular systems of two and three variables, whe
in Ref. @18#, a study has been made only in the case of t
variables for not so large times, where the QD approach is
longer valid. In this Rapid Communication we propose t
study, through the PTD, of the decay process of rotat
unstable Langevin-type dynamics in the presence of an
ternal force. The theoretical approach, which is quite gen
with emphasis in a time-dependent orthogonal rotation m
trix, is formulated in the context of two Langevin dynamic
representationsx and y, y being the transformed space o
coordinates in which the Langevin dynamics introduces
different concept of rotating external and internal~noise!
forces. It is precisely in they scheme where it can be bette
understood why the QD approach does not describe the
tational evolution of such systems, a fact not explained
Refs.@15,16#. We also show that in the generalized forma
ism, the systems of two and three variables are just partic
examples. We hope that the present paper may serv
stimulate corresponding experiments or theoretical studie
other fields, for instance, the dynamics of particles in
plasma. Our proposal also admits a covariant formulation

The rotating unstable Langevin-type equation for the c
umn vectorx in the presence of an external forcefe can be
written as

ẋ5ax1Wx1n~r !x1fe1z~ t !, ~1!

wherea is real and positive,W is a n3n real antisymmetric
matrix such thatWT52W andWT is transposed. The scala
functionn(r ) accounts for nonlinear contributions due to t
fact thatr[x25xTx, r being the square of the norm of th
vector andz(t) the fluctuating force whose elementsj i(t)
satisfy the property of Gaussian white noise with zero me
value and a correlation function

^j i~ t !j j~ t8!&52Qi j d i j d~ t2t8!, ~2!
©2001 The American Physical Society02-1
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where Qi j is the matrix that represents the noise intens
The linear systematic forcefs5ax1Wx is not in general
derived from a potential, because“3fs5“3WxÞ0 and
therefore the rotating character of the dynamics~1! is due to
the properties of the matixW.

A different equivalent Langevin-type dynamics may
obtained if we make the change of variabley5e2Wtx, such
that

ẏ5ay1n~r !y1R21~ t !fe1R21~ t !z~ t !, ~3!

where the factor eWt5R(t) is in general a time-dependen
orthogonal rotation matrix@19#, satisfying that RT(t)
5R21(t) and therefore e2Wt5R21(t); n(r ) remains the
same function becauser is invariant; i.e., r[xTx5yTy.
Clearly in these dynamics, the external force as well as
internal noise, are rotational.

The PTD characterizes the linear approximation of n
linear dynamics~1! or ~3!. Thus, it can be shown in gener
that the linear solution of Eqs.~1! and ~3!, assumingxi(0)
5yi(0)50, can be written as

xi~ t !5eatRi j ~ t !hj~ t !, yj~ t !5eathj~ t !, ~4!

with

hj~ t !5E
0

t

e2asRk j~s!@ f ek
1jk~s!#ds. ~5!

The dynamical characterization of the system will
given in terms of the square of the norm of vectorx andy,
which satisfies

r ~ t !5h2~ t !e2at, ~6!

whereh2(t)[hT(t)h(t). In the limit of long times, the pro-
cess~6! is dominated by the exponential term and the p
cessh2(t) plays the role of an effective initial condition an
therefore the solutions~4! become a quasideterministic pro
cess. In this limit of approximation, the linear process as
ciated with Eqs.~1! or ~3! can be well characterized by th
quasideterministic~QD! approach, but the rotational evolu
tion of the system is not properly described by this appro
@16,17#.

For not so large time scales, the QD approach is no lon
valid and therefore another approach must be propo
Here, we use the strategy proposed in Ref.@18#, where the
study has only been made for systems of two variables.
PTD at which the system reaches a reference valueR2 can be
calculated from Eq.~6!, but it is not an easy task, because t
right-hand side also depends on time. However, we must
some profit from the statistical properties of the processh(t),
which are given in general by

^hi~ t !&5E
0

t

e2asRki~s! f ek
ds, ~7!

and
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^hi~ t !hj~ t !&5^hi~ t !&^hj~ t !&1
Q

a
~12e22at!d i j , ~8!

where we have applied the orthogonality of the rotation m
trix R(t) and assumed thatQkk5Q.

To solve the problem, we propose that,

hi~ t !5^hi~ t !&1g~ t !h i , ~9!

whereg2(t)5(12e22at) andh i is a Gaussian random var
able with zero mean value and variance^h ih j&5Q/ad i j .
The process~9! is quite compatible with Eqs.~7! and~8!. If
we assume that the amplitude of the external force domin
over the intensity of internal noise, we can say that the do
nant contribution of the processhi(t) must be the first term
of Eq. ~9!, and therefore, we can make a series expansio
Eq. ~6! up to the first order in powers ofh i , such that

t5tP2
g~ tP!

a (
i

^hi~ tP!&

u^h~ tP!&u2
h i1O~h i

2!, ~10!

whereu^h(tP)&u25( i^hi(tP)&2 andtP is the zeroth order ap
proximation given by

tP5
1

2a
lnS R2

u^h~ tP!&u2
D . ~11!

The PTD is then

^t&5tP5
1

2a
lnS R2

u^h~ tP!&u2D , ~12!

and the variance defined as^(Dt)2&[^t2&2^t&2 will be

^~Dt !2&5
Q g2~ tP!

a3 (
i

^hi~ tP!&2

u^h~ tP!&u4
. ~13!

Clearly, the PTD is only dominated by the determinis
approximation, whereas the variance contains the effec
both internal noise through its intensityQ and external force
through the mean valuêhi(tP)&.

In the case of two variables, the matricesW andR(t) are
given by

W5S 0 v

2v 0 D , R~ t !5S cosvt sinvt

2sinvt cosvt D ,

~14!

and therefore“3fs522v k̂, which is a vector perpendicu
lar to the rotation plane. We use the same experimental
used in Ref.@15# to show, in Fig. 1, a single stochastic tra
jectory of the system on the plane (x1 ,x2), which is a circu-
lar spiral. On the plane (y1 ,y2) the corresponding stochast
trajectory describes ‘‘loops’’ as shown in Fig. 2. According
the solutions~4!, the set of spiral or ‘‘loops’’ trajectories
emerge from the origin of coordinates to reach the circle
radiusR at random directions because of the rotational ch
acter of the noise as given by Eq.~5!.
2-2
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To calculate the mean value of each component of
~7!, we can assume, without loss of generality, thatf e1

5 f e2
5ufeu/A2 with ufeu the modulus of vectorfe . Defining

z(t)[ufeu/l22A2(12e2l2t) and z* (t)[ufeu/l12A2(1
2e2l1t), where the asterisk stands for complex conjuga
l15a1 iv andl25a2 iv, and6 iv, are the eigenvalues o
matrix W. In this case we get̂h1(t)&5A(t)1 iB(t), and
^h2(t)&5A(t)2 iB(t), where A(t)[z(t)1z* (t) and B(t)

FIG. 1. Linear dynamical evolution of a single stochastic traj
tory of Eq. ~1! to reach the circle of radiusR250.02 in the case of
two variables.

FIG. 2. Linear dynamical evolution of a single stochastic traj
tory of Eq. ~3! to reach the same circle as in Fig. 1.
05010
q.

,

[z(t)2z* (t). The passage time distribution in this case
then

tP5t02
1

2a
ln@11f~ tP!#, ~15!

where

t05
1

2a
lnF ~a21v2!

ufeu2 G ~16!

andf(t)5@e22at22e2at cosvt#. In the limit of long times,
tP goes tot0, which is the deterministic limit of the QD
approach in the case of a large amplitude of external fo
and is not appropriate to characterize the rotation of the s
tem @12,16#. The second term of Eq.~15! has an oscillatory
behavior due to the functionf(t), and therefore, for not very
long times the time scaletP must be the appropriate one t
characterize the rotating evolution of the system.

For the variance we can get, for the large amplitude of
external force such thatb25aufeu2/Q(a21v2)@1, the fol-
lowing approximation

^~Dt !2&5
g2~ tP!

a2b2@11f~ tP!#
F11

f8~ tP!

2a„11f~ tP!…G
22

.

~17!

The time scaletP as well as the variance can be calculat
through the iterative procedure

FIG. 3. Same as Fig. 1, but in three dimensions.

FIG. 4. Same as Fig. 2, but in three dimensions.
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tP
(0)5t0 , tP

(n11)5t02
1

2a
ln@11f~ tP

(n)!#. ~18!

In the case of three variables, it can be shown that all
333 antisymmetric matrixW8 can be reduced to a 333
antisymmetric matrixW, very similar to that given in the
case of two variables@17#. That is, given the matrixW8, it
can be reduced to the matrixW and its corresponding asso
ciated rotation matrixR(t) as follows:

FIG. 5. ~a! Mean first time and~b! variance~jitter! as a function
of the rotation parameterv. The solid line corresponds to~a!, the
iteration of Eq.~18!, and to~b!, the analytical result of Eq.~17!;
open circles~filled circles! are the simulation results for the case
two ~three! variables.
l
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W5S 0 v 0

2v 0 0

0 0 0
D , R~ t !5S cosvt 2sinvt 0

sinvt cosvt 0

0 0 1
D ,

~19!

where nowv25v1
21v2

21v3
2, wherev i are the elements o

matrix W8. Similarly “3fs522v k̂. Under these circum-
stances the dynamical evolution of only one stochastic
jectory of the linear solution~4! to reach the sphere~not
shown! of radiusR, in the space of variables (x1 ,x2 ,x3), is
also a circular spiral but now growing along thex3 axis as
seen in Fig. 3. Also, the set of the stochastic trajector
leave from the origin of coordinates at random directions d
to rotational effects of the noise. Seen along thex3 axis, the
spiral trajectories are essentially the same as those desc
by the system of two variables. In they representation a
single stochastic trajectory of the system to reach the valuR
is also quite similar to that of Fig. 2, but in the three dime
sional space (y1 ,y2 ,y3), as shown in Fig. 4. Due to this fac
we can assume thatf e3

50 andj3(t)50 in the linear dynam-

ics of Eq.~1! and thereforêh3(t)&50. According with this,
the passage time distribution and the variance will be
same as those given by Eqs.~15! and ~17!, respectively. In
Fig. 5 we show the excellent agreement between the theo
ical results~15! and ~17! and numerical simulations for th
systems of two and three variables.
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